Effects of Forest Gaps on Litter Lignin and Cellulose Dynamics Vary Seasonally in an Alpine Forest
نویسندگان
چکیده
To understand how forest gaps and the associated canopy control litter lignin and cellulose dynamics by redistributing the winter snow coverage and hydrothermal conditions in the growing season, a field litterbag trial was conducted in the alpine Minjiang fir (Abies faxoniana Rehder and E.H. Wilson) forest in a transitional area located in the upper reaches of the Yangtze River and the eastern Tibetan Plateau. Over the first year of litter decomposition, the litter exhibited absolute cellulose loss and absolute lignin accumulation except for the red birch litter. The changes in litter cellulose and lignin were significantly affected by the interactions among gap position, period and species. Litter cellulose exhibited a greater loss in the winter with the highest daily loss rate observed during the snow cover period. Both cellulose and lignin exhibited greater changes under the deep snow cover at the gap center in the winter, but the opposite pattern occurred under the closed canopy in the growing season. The results suggest that decreased snowpack seasonality due to winter warming may limit litter cellulose and lignin degradation in alpine forest ecosystems, which could further inhibit litter decomposition. As a result, the ongoing winter warming and gap vanishing would slow soil carbon sequestration from foliar litter in cold biomes.
منابع مشابه
Cellulose Dynamics during Foliar Litter Decomposition in an Alpine Forest Meta-Ecosystem
To investigate the dynamics and relative drivers of cellulose degradation during litter decomposition, a field experiment was conducted in three individual ecosystems (i.e., forest floor, stream, and riparian zone) of an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, an...
متن کاملForest Gaps Alter the Total Phenol Dynamics in Decomposing Litter in an Alpine Fir Forest
The total phenol content in decomposing litter not only acts as a crucial litter quality indicator, but is also closely related to litter humification due to its tight absorption to clay particles. However, limited attention has been focused on the total phenol dynamics in foliar litter in relation to forest gaps. Here, the foliar litter of six representative tree species was incubated on the f...
متن کاملThe Influence of Geomorphological Characteristics of Forest Sites on the Decay Dynamics of Dead Trees in Asalem Forests, Western Hyrcanian Region
Knowledge of the decay trend of dead trees and site factors affecting their functions, plays an important role in the development of conservation management plans in forestry projects. This research was conducted in Asalem beech forests in northern Iran to assess the impact of physiographic features of the site on the process of dead trees decay. A total of 90 sample cuts of dead beech stumps w...
متن کاملFoliar Litter Nitrogen Dynamics as Affected by Forest Gap in the Alpine Forest of Eastern Tibet Plateau
There is increasing attention on the effects of seasonal snowpack on wintertime litter decomposition, as well as the processes following it, in cold biomes. However, little information is available on how litter nitrogen (N) dynamics vary with snowpack variations created by tree crown canopies in alpine forests. Therefore, to understand the effects of seasonal snowpack on litter N dynamics duri...
متن کاملForest gaps slow the sequestration of soil organic matter: a humification experiment with six foliar litters in an alpine forest
Humification of plant litter containing carbon and other nutrients greatly contributes to the buildup of soil organic matter, but this process can be altered by forest gap-induced environmental variations during the winter and growing seasons. We conducted a field litterbag experiment in an alpine forest on the eastern Tibetan Plateau from November 2012 to October 2014. Six dominant types of fo...
متن کامل